133 research outputs found

    Modeling sparse connectivity between underlying brain sources for EEG/MEG

    Full text link
    We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: (a) the EEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model, (b) the demixing is estimated jointly with the source MVAR parameters, (c) overfitting is avoided by using the Group Lasso penalty. This approach allows to extract the appropriate level cross-talk between the extracted sources and in this manner we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data, and compare to a number of existing algorithms with excellent results.Comment: 9 pages, 6 figure

    XAI-TRIS: Non-linear benchmarks to quantify ML explanation performance

    Full text link
    The field of 'explainable' artificial intelligence (XAI) has produced highly cited methods that seek to make the decisions of complex machine learning (ML) methods 'understandable' to humans, for example by attributing 'importance' scores to input features. Yet, a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method and has also so far hindered the theoretical verification and empirical validation of XAI methods. This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies. Here, we craft benchmark datasets for three different non-linear classification scenarios, in which the important class-conditional features are known by design, serving as ground truth explanations. Using novel quantitative metrics, we benchmark the explanation performance of a wide set of XAI methods across three deep learning model architectures. We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods. Moreover, we demonstrate that explanations derived from different model architectures can be vastly different; thus, prone to misinterpretation even under controlled conditions.Comment: Under revie

    Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Artifacts contained in EEG recordings hamper both, the visual interpretation by experts as well as the algorithmic processing and analysis (e.g. for Brain-Computer Interfaces (BCI) or for Mental State Monitoring). While hand-optimized selection of source components derived from Independent Component Analysis (ICA) to clean EEG data is widespread, the field could greatly profit from automated solutions based on Machine Learning methods. Existing ICA-based removal strategies depend on explicit recordings of an individual's artifacts or have not been shown to reliably identify muscle artifacts.</p> <p>Methods</p> <p>We propose an automatic method for the classification of general artifactual source components. They are estimated by TDSEP, an ICA method that takes temporal correlations into account. The linear classifier is based on an optimized feature subset determined by a Linear Programming Machine (LPM). The subset is composed of features from the frequency-, the spatial- and temporal domain. A subject independent classifier was trained on 640 TDSEP components (reaction time (RT) study, n = 12) that were hand labeled by experts as artifactual or brain sources and tested on 1080 new components of RT data of the same study. Generalization was tested on new data from two studies (auditory Event Related Potential (ERP) paradigm, n = 18; motor imagery BCI paradigm, n = 80) that used data with different channel setups and from new subjects.</p> <p>Results</p> <p>Based on six features only, the optimized linear classifier performed on level with the inter-expert disagreement (<it><</it>10% Mean Squared Error (MSE)) on the RT data. On data of the auditory ERP study, the same pre-calculated classifier generalized well and achieved 15% MSE. On data of the motor imagery paradigm, we demonstrate that the discriminant information used for BCI is preserved when removing up to 60% of the most artifactual source components.</p> <p>Conclusions</p> <p>We propose a universal and efficient classifier of ICA components for the subject independent removal of artifacts from EEG data. Based on linear methods, it is applicable for different electrode placements and supports the introspection of results. Trained on expert ratings of large data sets, it is not restricted to the detection of eye- and muscle artifacts. Its performance and generalization ability is demonstrated on data of different EEG studies.</p

    Theoretical Behavior of XAI Methods in the Presence of Suppressor Variables

    Full text link
    In recent years, the community of 'explainable artificial intelligence' (XAI) has created a vast body of methods to bridge a perceived gap between model 'complexity' and 'interpretability'. However, a concrete problem to be solved by XAI methods has not yet been formally stated. As a result, XAI methods are lacking theoretical and empirical evidence for the 'correctness' of their explanations, limiting their potential use for quality-control and transparency purposes. At the same time, Haufe et al. (2014) showed, using simple toy examples, that even standard interpretations of linear models can be highly misleading. Specifically, high importance may be attributed to so-called suppressor variables lacking any statistical relation to the prediction target. This behavior has been confirmed empirically for a large array of XAI methods in Wilming et al. (2022). Here, we go one step further by deriving analytical expressions for the behavior of a variety of popular XAI methods on a simple two-dimensional binary classification problem involving Gaussian class-conditional distributions. We show that the majority of the studied approaches will attribute non-zero importance to a non-class-related suppressor feature in the presence of correlated noise. This poses important limitations on the interpretations and conclusions that the outputs of these XAI methods can afford.Comment: Accepted at ICML 202

    Correlated Components Analysis - Extracting Reliable Dimensions in Multivariate Data

    Full text link
    How does one find dimensions in multivariate data that are reliably expressed across repetitions? For example, in a brain imaging study one may want to identify combinations of neural signals that are reliably expressed across multiple trials or subjects. For a behavioral assessment with multiple ratings, one may want to identify an aggregate score that is reliably reproduced across raters. Correlated Components Analysis (CorrCA) addresses this problem by identifying components that are maximally correlated between repetitions (e.g. trials, subjects, raters). Here we formalize this as the maximization of the ratio of between-repetition to within-repetition covariance. We show that this criterion maximizes repeat-reliability, defined as mean over variance across repeats, and that it leads to CorrCA or to multi-set Canonical Correlation Analysis, depending on the constraints. Surprisingly, we also find that CorrCA is equivalent to Linear Discriminant Analysis for zero-mean signals, which provides an unexpected link between classic concepts of multivariate analysis. We present an exact parametric test of statistical significance based on the F-statistic for normally distributed independent samples, and present and validate shuffle statistics for the case of dependent samples. Regularization and extension to non-linear mappings using kernels are also presented. The algorithms are demonstrated on a series of data analysis applications, and we provide all code and data required to reproduce the results

    Scrutinizing XAI using linear ground-truth data with suppressor variables

    Get PDF
    Machine learning (ML) is increasingly often used to inform high-stakes decisions. As complex ML models (e.g., deep neural networks) are often considered black boxes, a wealth of procedures has been developed to shed light on their inner workings and the ways in which their predictions come about, defining the field of 'explainable AI' (XAI). Saliency methods rank input features according to some measure of 'importance'. Such methods are difficult to validate since a formal definition of feature importance is, thus far, lacking. It has been demonstrated that some saliency methods can highlight features that have no statistical association with the prediction target (suppressor variables). To avoid misinterpretations due to such behavior, we propose the actual presence of such an association as a necessary condition and objective preliminary definition for feature importance. We carefully crafted a ground-truth dataset in which all statistical dependencies are well-defined and linear, serving as a benchmark to study the problem of suppressor variables. We evaluate common explanation methods including LRP, DTD, PatternNet, PatternAttribution, LIME, Anchors, SHAP, and permutation-based methods with respect to our objective definition. We show that most of these methods are unable to distinguish important features from suppressors in this setting.Comment: Corrected typo

    The role of a primary arthroplasty in the treatment of proximal tibia fractures in orthogeriatric patients

    Get PDF
    The total knee arthroplasty (TKA) is the gold standard for patients with an advanced symptomatic gonarthrosis. However, there are very few publications dealing with the primary TKA for patients with a proximal tibia fracture. In our retrospective study we evaluated 30 patients treated with a TKA for a proximal tibia fracture in our institution between 01/2008 and 12/2014. We collected the following statistical data from each patient: age, classification of the fracture (AO-classification), type of prosthesis used, length of the operation and hospitalization, and complications during the follow-up. We used the Knee Society Score (KSS) and the WOMAC score to evaluate the function. The Knee Society Score showed an average “general knee score” (KSS1) of 81.1 points and an average “functional knee score” (KSS2) of 74.5 points. The average WOMAC score was 78.6 points. Immediate postoperative mobilization with the possibility of a full-weight bearing is of crucial importance for the geriatric patients to maintain the mobility they had prior to the operation and reduce medical complications. Because of these advantages, the primary TKA seems to be a promising alternative to the ORIF of a proximal tibia fracture in the orthogeriatric patient
    corecore